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Abstract:

Artificial Intelligence (AI), with particular emphasis on Artificial Neural Networks (ANNSs), has
become an integral component of contemporary scientific and engineering disciplines. An
important emerging application is the use of real-time surrogate models within digital twin
frameworks for structural health monitoring. In the methodology presented, ANNs serve two
principal functions. First, during the calibration phase, they are employed to ensure that the digital
twin accurately reproduces the mechanical response of the corresponding physical structure.
Following calibration, the digital twin provides a platform for ANN training through physics-
informed deep learning, drawing on data generated by sensitivity analyses conducted via nonlinear
finite element simulations in ATENA software. In the subsequent stage, the trained ANN is
deployed as a rapid-response surrogate model, delivering critical safety-related information to
support the continuous monitoring of bridge structures. This study presents the development of a
computationally efficient and accurate ANN-based surrogate model and highlights advances in
physics-informed deep learning methodologies for structural analysis, reliability assessment, and
life-cycle evaluation of critical infrastructure. The calibrated numerical model has been
successfully applied to the durability assessment and life-cycle prediction of reinforced concrete
bridges.

Keywords: artificial intelligence, deep machine learning, digital twin, reinforced concrete bridges,
reinforced concrete modelling, nonlinear simulation, durability modelling, reinforcement corrosion.

1 Introduction

A resilient and efficient transport infrastructure is a cornerstone of economic productivity and
social development in both industrialized and emerging economies. In the European Union, road
and rail networks play a vital role in ensuring the mobility of goods, services, and people, directly
supporting competitiveness and cohesion across member states. However, a substantial proportion
of this infrastructure was constructed during the post-World War Il economic expansion, which
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implies that many bridges, tunnels, and railway structures have now exceeded half a century of
service. The ageing of these critical assets poses significant challenges, not only in terms of safety
and reliability but also with respect to the escalating costs of maintenance and rehabilitation.
Statistical evidence from 22 OECD countries [1] shows that between 1997 and 2016 the average
annual expenditure on infrastructure maintenance increased by approximately 1.78 billion euros,
underscoring the growing financial burden placed on public authorities and operators.

To address these challenges, innovative approaches are being explored to extend service life and
optimize resource allocation. Among these, the concept of the digital twin has gained increasing
prominence across engineering disciplines, including structural design and monitoring [2]. By
creating a dynamic, data-driven virtual replica of a physical asset, digital twins offer the potential
to improve predictive maintenance, enhance decision-making, and reduce lifecycle costs.

Fig. 1: Bridge digital Twin is typically a combination of monitoring of real structural response and
a numerical model that exchange data to provide predictions and information on structural health
and reliability.

The proposed methodology builds on the calibration of a computational model using data collected
directly from the physical structure. This process ensures that the digital representation is not only
geometrically accurate but also faithfully reproduces the essential mechanical and durability-
related characteristics of its real-world counterpart. In structural engineering practice, such
calibration involves simulating responses to both permanent (dead) and variable (live) loads, as
well as capturing long-term phenomena that influence durability, including cracking, creep,
shrinkage, and material degradation. A well-calibrated digital twin thus provides a robust platform
for evaluating the present condition of a structure and for forecasting its future performance under
evolving operational and environmental conditions. When complemented by systematic field
inspections and monitoring campaigns, the digital twin becomes a strategic instrument for
managing the ageing process of infrastructure assets and optimizing their maintenance schedules.

Artificial Intelligence (Al), particularly through the application of Artificial Neural Networks
(ANNSs), is increasingly reshaping industrial processes and engineering practices. One of its most
promising roles in structural engineering is the development of real-time, rapid-response surrogate
models embedded within digital twin frameworks. The digital twin paradigm refers to the creation
of a dynamic, data-driven digital replica of a physical asset (see Fig. 2). This virtual counterpart is
typically realized through advanced numerical models that remain in continuous interaction with
the real structure via sensor data, measurements, and simulation updates. In the case of reinforced
concrete structures, such twins are especially valuable for assessing safety margins, predicting
durability, and evaluating reliability throughout the life cycle. A primary motivation for this
approach is to overcome the limitations of current monitoring systems, where infrastructure owners
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and operators are often inundated with large and complex datasets that are difficult to interpret and
transform into timely engineering or maintenance decisions.

Within this framework, ANNs assume two fundamental roles:

Calibration of the Digital Twin: During the calibration phase, ANNs are employed to refine the
accuracy of the virtual model, ensuring that it replicates the actual behavior of the physical structure.
This is achieved through physics-informed deep learning, in which the network is trained with data
generated by systematic sensitivity analyses of the virtual model. These analyses are based on
nonlinear finite element simulations conducted with the ATENA software [3], which captures
complex material and structural responses. By integrating such simulated data into the training
process, the ANN can learn meaningful structural relationships that extend beyond purely statistical
correlations.

Real-Time Structural Health Monitoring: After training, the ANN is deployed as a rapid-response
surrogate model capable of delivering near-instantaneous safety insights for continuous structural
monitoring. This is particularly relevant for bridges and other critical transportation assets where
timely decision-making can mitigate risks and prevent costly failures. By providing fast yet reliable
assessments, this Al-driven strategy enhances the effectiveness of maintenance planning, supports
risk-informed asset management, and strengthens the resilience of infrastructure systems.

The integration of Al with digital twin technology constitutes a substantial advancement in
structural health monitoring. It enables infrastructure stakeholders to transition from reactive
maintenance strategies to proactive, data-driven decision-making processes. Beyond efficiency
gains, this synergy contributes to the long-term sustainability of critical assets by extending service
life, reducing maintenance costs, and improving resilience against both everyday deterioration and
extreme events. As such, the approach outlined here represents a significant step toward the
realization of intelligent, adaptive infrastructure management systems.

2 ANN Model for model calibration

Ensuring the accuracy and reliability of a Digital Twin is of paramount importance, as the quality
of its predictive capabilities depends directly on the fidelity of the underlying computational model.
In the present study, this requirement is addressed by developing a detailed numerical model of a
real-world bridge using the finite element simulation system ATENA [3]. This advanced software
environment is particularly suited for modeling the nonlinear behavior of reinforced concrete
structures. It is capable of simulating a wide range of critical mechanisms, including concrete
cracking and crushing, reinforcement yielding, prestressing effects, and the bond interaction
between concrete and steel reinforcement. Such comprehensive modeling capabilities are essential
for reproducing the complex failure modes that typically govern the performance and durability of
reinforced concrete bridges.

The constitutive material formulation employed is the fracture-plastic concrete model, which has
been elaborated in detail in previous publications [4][5]. Its applicability to the simulation of
common structural failure modes has been extensively validated in [6]. In that work, a systematic
calibration of model uncertainty was carried out, resulting in a model uncertainty partial safety
factor of 1.16. Furthermore, the statistical evaluation yielded a bias of of 15=0.979 and a coefficient
of variation Vg = 0.081. These values define the level of confidence and accuracy required for
parameter identification and provide a robust foundation for the application of Artificial Neural
Networks (ANNs) in the present framework [7][8].
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Fig. 2: Digital twin schema: ANN surrogate model is used for two purposes: ANN on the right for
model calibration, i.e., parameter identification, and ANN on the left provides real-time
engineering data for maintenance decisions.

To verify the feasibility of parameter identification with ANNs, a benchmark example was
performed using a shear beam model (Fig. 3), which was based on the well-documented
experimental campaign of Leonhardt [9]. The purpose of this verification was not to reproduce the
experimental data exactly, but rather to test whether an ANN can reliably infer key input parameters
of the material model from structural response data. Specifically, the parameters under
investigation were the compressive strength (f:), tensile strength (f;), elastic modulus (£), and
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fracture energy (Gr). These parameters were chosen because they represent the most influential
characteristics of concrete governing both stiffness and failure behavior.

For this purpose, a training dataset was generated consisting of up to 1000 precomputed load-
displacement curves, each corresponding to a different combination of material parameters. Fig. 4
illustrates the scatter of these simulated responses, highlighting the variability introduced by
changes in the selected input properties. The ANN was then trained to predict the most appropriate
set of material parameters that could reproduce the experimentally obtained structural response
(Fig. 5). The dataset was systematically partitioned, with 64% of samples used for training, 16%
reserved for validation, and 20% allocated for independent testing. This division ensures both
generalization and robustness of the trained network.

The results demonstrate that the ANN was able to achieve a high level of accuracy in predicting
the target material parameters, as evidenced by the close agreement observed in the testing series
(Fig. 6). This finding confirms that ANNs are capable of learning the nonlinear mapping between
load-displacement responses and underlying material properties, providing a promising tool for
automated parameter identification in digital twin applications. Importantly, this approach
significantly reduces the need for labor-intensive trial-and-error calibration of finite element
models, thereby accelerating the deployment of accurate digital twins for structural health
monitoring and life-cycle assessment of reinforced concrete bridges.

Ensuring the accuracy of a Digital Twin is crucial. In the presented work, this means developing a
numerical model of a real-world bridge, which was developed in the finite element simulation
system ATENA [3]. The software can simulate the nonlinear behavior of reinforced concrete
bridges, including cracking, crushing, reinforcement yielding, prestressing, and concrete-
reinforcement bonding.

The fracture-plastic concrete material model was detailed in earlier studies [4][5], and its
applicability for simulating typical failure modes was validated in [6]. There, the model uncertainty
partial safety factor was calibrated, yielding a general value of 1.16, with a bias of 16=0.979 and a
coefficient of variation V5=0.081, defining the required accuracy for parameter identification.

The parameter identification process using ANN was verified using a shear beam example (Fig. 3),
based on beams tested by Leonhardt [9]. The goal is not to match experimental data but to assess
whether an ANN can accurately identify input parameters—compressive strength (fc), tensile
strength (f;), elastic modulus (E), and fracture energy (Gr)—from a given load-displacement
diagram (Fig. 4). The training dataset contained up to 1000 precomputed samples with varying
material parameters. Fig. 4c illustrates the scatter of the calculated load-displacement diagrams.
The neural network is then trained to predict the most suitable set of material parameters for
predicting the experimentally obtained structural response indicated in Fig. 5. In each data set 64%
samples are used for training, 16% for validation and 20% for testing. Fig. 6 demonstrates the
accuracy of the predicted values for the selected material parameters from the testing series.
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1000 training dataset.

3 Rapid Response Surrogate Engineering Model

In conventional applications of bridge monitoring systems, vast quantities of data are continuously
collected through networks of sensors strategically distributed across the structure. These sensors
record real-time measurements of key physical quantities such as strain, displacement, acceleration,
and temperature. In current practice, the monitoring strategy frequently relies on comparing these
raw measurements against predefined threshold values. When a threshold is exceeded, the system
issues warnings or alarms to alert operators of potential anomalies. Although this approach ensures
a basic level of safety surveillance, it suffers from a significant drawback: the sensor readings
themselves often lack direct interpretability and are not inherently linked to engineering-level
indicators of structural performance. Consequently, operators are left with large datasets that may
be difficult to interpret in terms of actual structural safety or serviceability.

For decision-makers and engineers, what is needed are higher-level performance indicators that
can meaningfully capture the condition of the structure. Such engineering metrics include, for
instance, the structural reliability index, the probability of failure or collapse, and the utilization
ratio of specific structural components under applied loading. Unlike isolated sensor measurements,
these indicators provide actionable insights into the safety margin of the bridge and its capacity to
withstand current and future demands. The inability of conventional systems to directly provide
this information underscores a critical gap between raw data collection and meaningful engineering
assessment.

This gap can be addressed through the use of surrogate models, which serve as computationally
efficient proxies that link raw sensor data with engineering-level quantities. A surrogate model
essentially encapsulates the complex relationships derived from detailed numerical simulations or
experimental data, enabling it to translate sensor inputs into interpretable metrics in near real time.
In doing so, surrogate models not only reduce the computational burden associated with repeated
nonlinear finite element analyses but also significantly enhance the responsiveness and utility of
bridge monitoring systems. By delivering rapid estimations of performance indicators, they support
informed decision-making regarding maintenance, operation, and risk management.

To demonstrate this concept, the previously introduced shear beam benchmark is revisited as a
validation case. Here, a Dense Neural Network (Dense NN) architecture is employed to construct
the surrogate model. The chosen network consists of four hidden layers, providing sufficient depth
to capture the nonlinear relationships between inputs and outputs. The surrogate model in this
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context is designed to replicate the results of computationally demanding nonlinear simulations by
learning a functional mapping, denoted as ®,. This mapping (1) estimates the applied load F; based
on a combination of deflection values D; and material properties, including the elastic modulus (E),
compressive strength (f.), tensile strength (f;), and fracture energy (Gr).

The advantage of this surrogate representation is twofold. First, it drastically reduces the time
required to obtain load estimations compared to running full finite element analyses, enabling near
real-time evaluation of structural behavior. Second, by embedding physics-informed training data,
the surrogate model maintains a close correspondence with the underlying mechanics of reinforced
concrete behavior. As a result, the model provides not only speed but also accuracy and
interpretability, thereby enhancing the overall effectiveness of digital twin—based bridge
monitoring systems. In practical terms, this allows engineers and operators to transition from being
passive data collectors to proactive decision-makers equipped with reliable, timely, and actionable
insights.

Fi = (pp (Di, Ee, £, i, Gr) (1)

Fig. 7 shows the training results of the surrogate model for the pilot case of the shear beam (see
Fig. 3), evaluated for two different datasets, referred to as Dataset A and Dataset B. These datasets,
containing 100 and 400 samples respectively, were generated through nonlinear finite element (FE)
simulations. Each dataset captures the relationship between structural deflection and applied load
across a range of varying material properties. The primary objective was to exploit these datasets
to train an artificial neural network (ANN) capable of functioning as a computationally efficient
surrogate, thereby replicating the results of full-scale FE simulations at a fraction of the
computational cost.

The figure further illustrates the predictive performance of the surrogate model by comparing its
outputs with the original FE simulations for previously unseen test data. These test samples were
deliberately excluded from the training phase in order to provide an unbiased assessment of the
generalization ability of the ANN. In the load—displacement diagrams presented, the solid curves
correspond to the original FE responses, while the dotted curves depict the surrogate model
predictions. Even in the case of Dataset A, with only 100 training samples, the ANN is able to
approximate the FE responses with reasonable accuracy, capturing both the nonlinear behavior and
the overall system trends. Minor discrepancies are visible, particularly in regions of high
nonlinearity, yet the model consistently reproduces the essential features of the structural response.
When trained with Dataset B (400 samples), the predictive quality improves markedly. The larger
dataset provides the ANN with greater exposure to the variability of material parameters, enabling
it to learn a more precise mapping between inputs and outputs. This results in a more robust model
with reduced error and higher reliability in reproducing unseen responses.



2:084 0.08

0.06 4 0.06 1

Force
1
Force

0.04

002 0.02

0:00 0.00 -

0.000 0.002 0.004 0.006 0.008 0.010

. 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
Deflation

Deflation

Fig. 7. Capability of the ANN surrogate model to predict the load-displacement curves of the shear
beam model, (lef) Dataset A — 100 samples, (right) Dataset B — 400 samples.

The broader significance of this exercise extends beyond the pilot shear beam case. Within the
framework of Digital Twin technology, ANN-based surrogate models such as the one demonstrated
here can be deployed in near real time to evaluate structural condition and operational safety. A
particularly valuable application lies in the estimation of utilization ratios, which quantify the
proximity of a structure to its failure threshold under the prevailing load state. By providing this
metric in real time, the surrogate model equips infrastructure managers with actionable insights
that go far beyond raw sensor data. Such capabilities open the door to proactive maintenance
strategies, early-warning systems for abnormal behavior, and optimization of load management.
Ultimately, the integration of surrogate modeling into digital twins enhances not only the efficiency
of monitoring but also the resilience and long-term sustainability of critical infrastructure systems.

4 Example of composite concrete steel railway bridge

This section introduces a pilot implementation of the proposed Digital Twin framework, integrating
ANN-based surrogate modeling, applied to a real-world bridge structure. The case study focuses
on a small railway bridge shown in Fig. 8, which is located near the village of Kostomlaty in the
Czech Republic. The bridge, constructed in 1946, is a relatively modest two-span structure
composed of four reinforced concrete slabs strengthened with embedded steel I-sections (see Fig.
9). After more than seven decades of service, the bridge exhibits pronounced signs of ageing and
material deterioration. Most notably, longitudinal cracks have formed along the underside of the
slabs, raising concerns regarding the structural integrity and long-term durability of the system.

Assessment of the bridge revealed that, while it narrowly satisfies the required load-bearing
capacity under Ultimate Limit State (ULS) conditions, it performs poorly under Serviceability
Limit State (SLS) checks. Excessive deflections and the extent of visible cracking indicate that the
bridge does not meet current serviceability criteria, thereby limiting its reliability in day-to-day
operation. Due to these issues, the structure was selected for continuous monitoring and designated
as a pilot demonstrator within the ongoing Digital Twin research project. Its relatively simple
geometry, coupled with its deteriorated condition, makes it an ideal candidate for testing and
validating the practical integration of Digital Twin concepts with Al-driven surrogate models.

Within the proposed framework, the ANN model discussed in Section 2 is first used for system
identification to find suitable material parameters as shown in Fig. 10. Then the ANN-based
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surrogate model developed in Section 3 is deployed to forecast the bridge’s thermal response. The
model, trained on a series of nonlinear FE simulations using the model shown in Fig. 11, is
designed to estimate strain values resulting from time-varying ambient temperature conditions.
Hourly temperature histories—such as the representative June profile used in this study—can be
readily obtained from standard meteorological records. Structural response is tracked using fiber-
optic sensors installed longitudinally along the underside of the bridge deck (Fig. 8 and Fig. 9).
These sensors record strain at four distinct locations, with particular attention given here to the
mid-span readings, where thermal effects are typically most pronounced.

Fig. 12 compares the FE-predicted strain responses at the sensor locations under the imposed
temperature history. This simulated dataset provides the foundation for training the ANN-based
surrogate model, enabling it to reproduce thermal strain behavior with high computational
efficiency. Once trained, the ANN operates as a functional mapping that predicts thermal-induced
strains directly from temperature input data, thus enabling real-time evaluation of structural
response within the Digital Twin environment. This approach demonstrates how surrogate models
can bridge the gap between computationally demanding nonlinear simulations and the need for
rapid, continuous predictions required in practical monitoring applications. The ANN based
surrogate model from Section 3 then represents a functional:

Sni = CDT[fTi(ti—u» ti), Tapg (ti—72, ti—24) ] (2)

The ANN model estimates the strain value at sensor S, at time step 7, using the ambient temperature
history over the preceding 24 hours and the current time i. Additionally, it incorporates the average
temperature from the earlier 48-hour period (i.e., between i—72 and i—24) to account for long-term
thermal effects.

The developed ANN model is designed to provide an estimate of the structural response recorded
at a given sensor S,, at time step i. The prediction is based on two sources of thermal information:
(1) the detailed temperature history over the preceding 24 hours, and (ii) the average temperature
trend calculated over the two days prior to that interval, i.e., the range from (i-72, i-24) hours. This
combination of short-term fluctuations and longer-term thermal trends allows the surrogate model
to capture both immediate and cumulative temperature effects on the bridge structure.

The accuracy of the ANN surrogate in reproducing measured strain values is demonstrated in Fig.
12, where the predicted sensor outputs show strong agreement with the reference data. This
validation highlights the capability of the surrogate model to replace computationally demanding
finite element simulations with near real-time predictions. Importantly, the approach is not
restricted to strain measurements alone. Once trained, the ANN surrogate can be configured to
predict a broad range of engineering performance quantities that are directly relevant for structural
assessment. For instance, it may be employed to estimate the maximum crack width in critical
regions of the slab or to identify the peak compressive stress developing in the concrete (see Fig.
13). Such indicators are of far greater practical significance for engineers than raw strain values,
as they directly relate to serviceability and safety criteria.
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Fig. 9: Kostomlaty pilot bridge application example showing the top view with the sensor locations.
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Fig. 10: Example of data fitting and parameter identification process for Kostomlaty railway bridge.

Fig. 11: Finite element model of the quarter section of the model, right figure shows the location
of the internal I steel beams.

It is essential to recognize that the structural response of the studied bridge is highly nonlinear,
owing to its hybrid system of embedded steel beams within plain concrete. As illustrated in Fig.
14, microcracking is observed even under the action of self-weight, prior to the application of
service loads. These microcracks further propagate under thermal loading, underscoring the
complex interaction between temperature variation, restraint effects, and the inherent material
nonlinearity of concrete. Capturing such effects with traditional linear approaches would be
infeasible, whereas ANN-based surrogates trained on nonlinear simulations can efficiently account
for them.
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In general, any engineering quantity of interest for the investigated bridge can be evaluated using
an appropriately trained ANN-based surrogate model. Conceptually, such models can be expressed
in the generic functional form:

Rui = @eng|fri(tiz2a: t), Tavg (tiz72, tiz24), Sni | (3)

This flexible formulation highlights the adaptability of ANN surrogates for diverse monitoring
objectives, paving the way for their broader integration into Digital Twin frameworks for predictive,
data-driven infrastructure management.
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Fig. 12: The left graph shows the evolution of ambient temperatures at the bridge location in the
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Following the successful training of the ANN using the numerical model illustrated in Fig. 11, the
fast-response surrogate model introduced in Section 3 was deployed to predict a range of
engineering quantities that are directly relevant for bridge assessment and maintenance planning.
These outputs, integrated within the prototype Digital Twin platform, provide infrastructure
managers with rapid and interpretable indicators that go far beyond raw sensor measurements.
Selected screenshots from the developed platform are presented to demonstrate the potential of this
approach in supporting decision-making processes.

As an example, Fig. 14 displays the evolution of the bridge utilization ratio during a train overpass.
This metric quantifies the proportion of the load-bearing capacity currently mobilized by the
structure, offering an immediate measure of how close the bridge is operating to its design limits.
Such information is invaluable for real-time risk evaluation and for planning traffic restrictions or
load management strategies during critical periods.

In addition, Fig. 15 highlights two further predictive outputs derived from sensor readings and
ANN-based surrogate calculations during the same train crossing. The first is the distribution of
maximum stresses in the bottom steel flange, which plays a key role in ensuring structural safety
under repeated live loads. The second is the estimation of anticipated crack widths within the
concrete slab, an important serviceability criterion that influences durability, long-term stiffness,
and maintenance requirements. By providing these parameters in near real time, the surrogate
model enables engineers to not only monitor structural safety but also anticipate degradation
mechanisms that affect the bridge’s life-cycle performance.

Collectively, these examples illustrate the versatility of the ANN-based surrogate approach. By
transforming sensor inputs into actionable engineering metrics, the Digital Twin platform enhances
operational awareness, supports proactive maintenance strategies, and contributes to the
sustainable management of ageing infrastructure.
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Fig. 15: Prediction of bridge bottom flange stresses in steel I section (a) and crack opening and
closure in concrete slab (b) during train overpass.
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5 Example of durability assessment of reinforced concrete road bridge

The overarching goal of this research is to employ ANN-based surrogate models for the predictive
assessment of the life-cycle performance, durability, reliability, and safety of reinforced concrete
structures. This capability is essential for moving beyond reactive maintenance toward proactive,
data-driven infrastructure management. To illustrate the practical application of this approach, a
second pilot case study is presented, focusing on the Vogelsang Bridge in Esslingen, Germany,
which spans the Neckar River.

The Vogelsang Bridge represents a complex structure composed of eight partial sections built using
three different construction methods. Erected between 1971 and 1973, the bridge has a total length
of approximately 595 m and covers an overall deck area of 9,744 m?, including its approach ramps.
For the purposes of monitoring and analysis, two representative spans of 13.8 m + 13.2 m were
selected. Structurally, this section corresponds to a continuous, non-prestressed reinforced concrete
beam with a structural depth of 0.6 m.

As part of the European cyberBridge project (www.cyberbridge.eu) an extensive in-situ monitoring
campaign was carried out over a period of 61 days, from January to March 2019. The monitoring
system employed was the iBWIM (Bridge-Weigh-In-Motion) technology, developed by PEC —
Petschacher Consulting ZT-GmbH. This innovative system enables the continuous recording of
structural responses under real traffic conditions without interrupting service.

The monitoring setup consisted of deflection measurement units coupled with a laser rangefinder
used for accurate vehicle detection (see Fig. 16). These units were installed on the underside of
the bridge, ensuring that installation and operation did not interfere with traffic flow. Each unit
integrated both strain gauges and a data acquisition module, allowing for the precise measurement
of strain responses under varying traffic loads. The strain gauges were strategically arranged in
both the transverse and longitudinal directions, providing a comprehensive picture of load
distribution, stress transfer, and overall structural behavior.

The virtual numerical models were developed using the finite element (FE) simulation platform
ATENA [3]. Calibration of the models was performed against monitoring results from the bridge,
supplemented by reference loading tests with calibration trucks of known weight (see Fig. 17).
Once calibrated, the FE model was able to reproduce the key behavioral characteristics of the real
structure, not only under short-term loading but also considering the long-term deterioration
mechanisms that govern the service life of reinforced concrete bridges. These ageing mechanisms
were incorporated into the model through a mechano-chemical framework, which explicitly
accounts for the accelerated progression of damage in the presence of mechanical cracking. The
degradation model itself has been described and validated in earlier work [10] and is therefore only
summarized here.

The nonlinear response of the concrete was modeled using the fracture—plastic constitutive material
law [5] implemented in ATENA software [3]. This advanced formulation captures the main aspects
of reinforced concrete behavior, including tensile cracking, compressive crushing, reinforcement
yielding or rupture, and potential bond failure between steel and concrete. One of the most critical
deterioration processes for such structures is the long-term action of deicing salts, which are
regularly applied during winter maintenance. Chloride ions from these salts penetrate into the
porous concrete matrix, gradually diffusing towards the reinforcing steel. As chloride concentration
increases, the pore solution pH decreases and the alkalinity of the concrete cover is reduced. Once
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the protective alkaline environment is lost, reinforcement corrosion is initiated, leading to
progressive cross-sectional loss of steel and, ultimately, reduction in load-carrying capacity.

Fig. 16: View and instrumentation of the selected section of the Vogelsang bridge, Esslingen,
Germany.
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Fig. 17: View of the crack development and strain sensor data from the truch overpass during the
model calibration process.
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In the finite element simulation, this process is modeled by coupling a chloride ingress model with
a reinforcement corrosion model. Chloride transport through the porous medium is represented as
a combined diffusion and binding process, where ions are partly absorbed by the C-S-H gel or
precipitated as secondary compounds [11]. In engineering applications, this is typically represented
through a diffusion equation with a time-dependent coefficient. Importantly, the presence of cracks
caused by loading accelerates chloride transport, a phenomenon captured in the model by updating
the diffusion rate as a function of crack width. The diffusion process itself is represented as a one-
dimensional transport mechanism, which allows efficient application even in large-scale
simulations.

At each reinforcement location, modeled using the discrete embedded reinforcement approach [12],
the chloride concentration is tracked over time. When the chloride content at the depth of
reinforcement exceeds a critical threshold, corrosion is initiated. The corrosion rate is then
calculated as a function of chloride concentration, exposure temperature, and elapsed time. The
simulation proceeds in incremental steps: in each step, the corrosion depth is estimated and the
steel cross-sectional area is reduced accordingly. A new static equilibrium is computed, updated
crack widths are evaluated, and these in turn accelerate chloride ingress in the subsequent step.
This iterative coupling between mechanical damage and chemical deterioration allows the model
to realistically capture the long-term degradation process.

The numerical implementation builds upon the mechanistic formulations of Liu and Weyers [13]
and the guidelines established in the DuraCrete project [14]. The effect of reinforcement corrosion
on bond strength is also explicitly considered. Here, the bond—slip law was defined according to
the fib Model Code 2010 [15], while the reduction of bond properties due to corrosion was
implemented following the empirical relationships proposed by Bhargava et al. [16].

For structural assessment using nonlinear FE analysis, it is essential to define a load history that
reflects both the actual sequence of actions on the real bridge and the combinations prescribed by
design codes. In addition to permanent and live loads, the long-term deterioration due to chloride
ingress and reinforcement corrosion must be included. A representative load sequence used in the
Vogelsang Bridge case study is as follows:

- Step 1: Application of design dead loads (self-weight and superimposed dead loads).

- Step 2: Application of design live loads, including concentrated and distributed traffic
effects.

- Step 3: Removal of the live loads applied in step 2.

- Step 4: Simulation of chloride-induced degradation and associated corrosion effects. (Fig.
18)

- Step 5: Re-application of live loads to overload conditions.

Chloride attack was simulated for progressive durations of 25, 50, 75, 100, 125, and 150 years
within step 4. Partial reloading of dead and live loads was included during this interval to replicate
the realistic service conditions under which chloride penetration occurs, excluding partial safety
factors. After deterioration simulation, the structure was subjected to increasing live loads until
failure, generating a set of load—displacement curves (see Fig. 20) corresponding to different stages
of ageing. This figure demonstrates the effect of reinforcement corrosion on the load-carrying
capacity of the bridge. It is possible to observe how the strength of the bridge is gradually
decreasing over the years.
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Fig. 18: Numerical model of the Vogelsang bridge with the indication of the assumed chloride
concentrations at the bottom at top bridge surfaces.
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The global resistance evaluation followed the ECoV approach originally proposed in [17] and later
adopted in fib Model code 2010 [15], which requires paired analyses with mean and characteristic
material parameters. The resulting time-dependent resistance evolution is plotted in Fig. 21. For
the Vogelsang Bridge, the model predicts a life expectancy of approximately 132 years.
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Fig. 19: The evolution of chloride concentration (a), resulting reinforcement corrosion (b), crack
development (c) and reinforcement stresses (d) at the time of 135 years during the durability
numerical simulation.

The most interesting and unique results from the presented long term and durability behavior or
this reinforced concrete bridge are summarized in Fig. 19. This figure shows various interesting
quantities at the time of 135 years of the bridge life. The evolution of chloride concentration at the
depth of the reinforcement cover is shown in Fig. 19a. The resulting reinforcement corrosion using
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the briefly described chloride ingress and corrosion model [10] is depicted in Fig. 19b. The
reinforcement corrosion is indicated as a relative cross-sectional area that is lost due to corrosion.
This means that the value of 0 indicates no corrosion, and the value of 1 means that the whole
reinforcement cross-sectional area has been lost due to the corrosion. The loss of reinforcement
area results in the increase crack propagation, which is shown in Fig. 19c as well as in the higher
reinforcement stresses in Fig. 20d.
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Fig. 20: Load-displacement curves for loading up to failure after several years of corrosion process
(left), crack pattern at failure load for the highest exposure of 150 years (right).
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Fig. 21: Evolution of Vogelsang bridge capacity depending on years of chloride exposure (left),
Stresses in the corroded reinforcement at the peak load for the most critical scenario of 150 years
of exposure (right).

6 Conclusions

This study has investigated the integration of Artificial Neural Networks (ANNs) into a Digital Twin
framework for the structural analysis and monitoring of reinforced concrete bridges. Within the proposed
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methodology, ANNSs serve a dual role: first, in the calibration of the virtual twin, ensuring that the numerical
model reliably reproduces the behavior of the physical structure; and second, in the development of fast-
response surrogate models that enable near real-time translation of raw sensor data into actionable
engineering quantities. These surrogate models provide direct estimates of performance indicators such as
utilization ratios, stress levels, and crack widths, thereby bridging the gap between continuous monitoring
data and engineering decision-making.

A central advantage of the approach lies in addressing a persistent limitation of conventional monitoring
systems: while modern sensing technologies can generate vast amounts of data, operators often struggle to
interpret these measurements in terms of structural safety, reliability, and serviceability. By embedding
physics-informed ANN models into a Digital Twin environment, the proposed framework offers a pathway
to transform overwhelming raw data streams into interpretable and decision-relevant information, ultimately
enhancing the efficiency and accuracy of infrastructure management.

Beyond short-term monitoring, this work has also highlighted the integration of durability and ageing
models into the Digital Twin concept. By coupling mechano-chemical formulations for chloride ingress and
reinforcement corrosion with nonlinear FE simulations, and subsequently embedding these results into ANN
surrogates, the framework is extended toward predictive life-cycle assessment. This capability enables not
only the evaluation of current structural condition but also the forecasting of long-term degradation
processes, thereby supporting proactive maintenance planning and sustainable asset management.

Overall, the combination of Al-driven surrogate modeling, durability simulation, and Digital Twin
technology marks a significant advancement in structural health monitoring. It paves the way for intelligent,
data-driven infrastructure systems that can anticipate deterioration, optimize resource allocation, and ensure
the long-term safety and reliability of critical bridge networks.

This work is part of a research project supported by the Czech Technology Agency under the project
TM04000012 “BRIHIS - A concrete bridge health interpretation system based on mutual boost of big data
and physical mechanism” within the Delta 2 Programme. The financial support is greatly
acknowledged.
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Fig. 1: Bridge digital Twin is typically a combination of monitoring of real structural response and
a numerical model that exchange data to provide predictions and information on structural health
and reliability.
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Fig. 11: Finite element model of the quarter section of the model, right figure shows the location
of the internal I steel beams.
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Fig. 12: The left graph shows the evolution of ambient temperatures at the bridge location in the
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