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Abstract:  

Artificial Intelligence (AI), with particular emphasis on Artificial Neural Networks (ANNs), has 

become an integral component of contemporary scientific and engineering disciplines. An 

important emerging application is the use of real-time surrogate models within digital twin 

frameworks for structural health monitoring. In the methodology presented, ANNs serve two 

principal functions. First, during the calibration phase, they are employed to ensure that the digital 

twin accurately reproduces the mechanical response of the corresponding physical structure. 

Following calibration, the digital twin provides a platform for ANN training through physics-

informed deep learning, drawing on data generated by sensitivity analyses conducted via nonlinear 

finite element simulations in ATENA software. In the subsequent stage, the trained ANN is 

deployed as a rapid-response surrogate model, delivering critical safety-related information to 

support the continuous monitoring of bridge structures. This study presents the development of a 

computationally efficient and accurate ANN-based surrogate model and highlights advances in 

physics-informed deep learning methodologies for structural analysis, reliability assessment, and 

life-cycle evaluation of critical infrastructure. The calibrated numerical model has been 

successfully applied to the durability assessment and life-cycle prediction of reinforced concrete 

bridges. 

 

Keywords: artificial intelligence, deep machine learning, digital twin, reinforced concrete bridges, 

reinforced concrete modelling, nonlinear simulation, durability modelling, reinforcement corrosion. 

1 Introduction  

A resilient and efficient transport infrastructure is a cornerstone of economic productivity and 

social development in both industrialized and emerging economies. In the European Union, road 

and rail networks play a vital role in ensuring the mobility of goods, services, and people, directly 

supporting competitiveness and cohesion across member states. However, a substantial proportion 

of this infrastructure was constructed during the post-World War II economic expansion, which 
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implies that many bridges, tunnels, and railway structures have now exceeded half a century of 

service. The ageing of these critical assets poses significant challenges, not only in terms of safety 

and reliability but also with respect to the escalating costs of maintenance and rehabilitation. 

Statistical evidence from 22 OECD countries [1] shows that between 1997 and 2016 the average 

annual expenditure on infrastructure maintenance increased by approximately 1.78 billion euros, 

underscoring the growing financial burden placed on public authorities and operators. 

To address these challenges, innovative approaches are being explored to extend service life and 

optimize resource allocation. Among these, the concept of the digital twin has gained increasing 

prominence across engineering disciplines, including structural design and monitoring [2]. By 

creating a dynamic, data-driven virtual replica of a physical asset, digital twins offer the potential 

to improve predictive maintenance, enhance decision-making, and reduce lifecycle costs. 

        

Fig.  1: Bridge digital Twin is typically a combination of monitoring of real structural response and 

a numerical model that exchange data to provide predictions and information on structural health 

and reliability.  

The proposed methodology builds on the calibration of a computational model using data collected 

directly from the physical structure. This process ensures that the digital representation is not only 

geometrically accurate but also faithfully reproduces the essential mechanical and durability-

related characteristics of its real-world counterpart. In structural engineering practice, such 

calibration involves simulating responses to both permanent (dead) and variable (live) loads, as 

well as capturing long-term phenomena that influence durability, including cracking, creep, 

shrinkage, and material degradation. A well-calibrated digital twin thus provides a robust platform 

for evaluating the present condition of a structure and for forecasting its future performance under 

evolving operational and environmental conditions. When complemented by systematic field 

inspections and monitoring campaigns, the digital twin becomes a strategic instrument for 

managing the ageing process of infrastructure assets and optimizing their maintenance schedules. 

Artificial Intelligence (AI), particularly through the application of Artificial Neural Networks 

(ANNs), is increasingly reshaping industrial processes and engineering practices. One of its most 

promising roles in structural engineering is the development of real-time, rapid-response surrogate 

models embedded within digital twin frameworks. The digital twin paradigm refers to the creation 

of a dynamic, data-driven digital replica of a physical asset (see Fig.  2). This virtual counterpart is 

typically realized through advanced numerical models that remain in continuous interaction with 

the real structure via sensor data, measurements, and simulation updates. In the case of reinforced 

concrete structures, such twins are especially valuable for assessing safety margins, predicting 

durability, and evaluating reliability throughout the life cycle. A primary motivation for this 

approach is to overcome the limitations of current monitoring systems, where infrastructure owners 
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and operators are often inundated with large and complex datasets that are difficult to interpret and 

transform into timely engineering or maintenance decisions. 

Within this framework, ANNs assume two fundamental roles: 

Calibration of the Digital Twin: During the calibration phase, ANNs are employed to refine the 

accuracy of the virtual model, ensuring that it replicates the actual behavior of the physical structure. 

This is achieved through physics-informed deep learning, in which the network is trained with data 

generated by systematic sensitivity analyses of the virtual model. These analyses are based on 

nonlinear finite element simulations conducted with the ATENA software [3], which captures 

complex material and structural responses. By integrating such simulated data into the training 

process, the ANN can learn meaningful structural relationships that extend beyond purely statistical 

correlations. 

Real-Time Structural Health Monitoring: After training, the ANN is deployed as a rapid-response 

surrogate model capable of delivering near-instantaneous safety insights for continuous structural 

monitoring. This is particularly relevant for bridges and other critical transportation assets where 

timely decision-making can mitigate risks and prevent costly failures. By providing fast yet reliable 

assessments, this AI-driven strategy enhances the effectiveness of maintenance planning, supports 

risk-informed asset management, and strengthens the resilience of infrastructure systems. 

The integration of AI with digital twin technology constitutes a substantial advancement in 

structural health monitoring. It enables infrastructure stakeholders to transition from reactive 

maintenance strategies to proactive, data-driven decision-making processes. Beyond efficiency 

gains, this synergy contributes to the long-term sustainability of critical assets by extending service 

life, reducing maintenance costs, and improving resilience against both everyday deterioration and 

extreme events. As such, the approach outlined here represents a significant step toward the 

realization of intelligent, adaptive infrastructure management systems. 

2 ANN Model for model calibration 

Ensuring the accuracy and reliability of a Digital Twin is of paramount importance, as the quality 

of its predictive capabilities depends directly on the fidelity of the underlying computational model. 

In the present study, this requirement is addressed by developing a detailed numerical model of a 

real-world bridge using the finite element simulation system ATENA [3]. This advanced software 

environment is particularly suited for modeling the nonlinear behavior of reinforced concrete 

structures. It is capable of simulating a wide range of critical mechanisms, including concrete 

cracking and crushing, reinforcement yielding, prestressing effects, and the bond interaction 

between concrete and steel reinforcement. Such comprehensive modeling capabilities are essential 

for reproducing the complex failure modes that typically govern the performance and durability of 

reinforced concrete bridges. 

The constitutive material formulation employed is the fracture-plastic concrete model, which has 

been elaborated in detail in previous publications [4][5]. Its applicability to the simulation of 

common structural failure modes has been extensively validated in [6]. In that work, a systematic 

calibration of model uncertainty was carried out, resulting in a model uncertainty partial safety 

factor of 1.16. Furthermore, the statistical evaluation yielded a bias of of μθ=0.979 and a coefficient 

of variation Vθ = 0.081. These values define the level of confidence and accuracy required for 

parameter identification and provide a robust foundation for the application of Artificial Neural 

Networks (ANNs) in the present framework [7][8]. 
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Fig.  2: Digital twin schema: ANN surrogate model is used for two purposes: ANN on the right for 

model calibration, i.e., parameter identification, and ANN on the left provides real-time 

engineering data for maintenance decisions. 

To verify the feasibility of parameter identification with ANNs, a benchmark example was 

performed using a shear beam model (Fig.  3), which was based on the well-documented 

experimental campaign of Leonhardt [9]. The purpose of this verification was not to reproduce the 

experimental data exactly, but rather to test whether an ANN can reliably infer key input parameters 

of the material model from structural response data. Specifically, the parameters under 

investigation were the compressive strength (fc), tensile strength (ft), elastic modulus (E), and 
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fracture energy (GF). These parameters were chosen because they represent the most influential 

characteristics of concrete governing both stiffness and failure behavior. 

For this purpose, a training dataset was generated consisting of up to 1000 precomputed load-

displacement curves, each corresponding to a different combination of material parameters. Fig.  4 

illustrates the scatter of these simulated responses, highlighting the variability introduced by 

changes in the selected input properties. The ANN was then trained to predict the most appropriate 

set of material parameters that could reproduce the experimentally obtained structural response 

(Fig. 5). The dataset was systematically partitioned, with 64% of samples used for training, 16% 

reserved for validation, and 20% allocated for independent testing. This division ensures both 

generalization and robustness of the trained network. 

The results demonstrate that the ANN was able to achieve a high level of accuracy in predicting 

the target material parameters, as evidenced by the close agreement observed in the testing series 

(Fig. 6). This finding confirms that ANNs are capable of learning the nonlinear mapping between 

load-displacement responses and underlying material properties, providing a promising tool for 

automated parameter identification in digital twin applications. Importantly, this approach 

significantly reduces the need for labor-intensive trial-and-error calibration of finite element 

models, thereby accelerating the deployment of accurate digital twins for structural health 

monitoring and life-cycle assessment of reinforced concrete bridges. 

Ensuring the accuracy of a Digital Twin is crucial. In the presented work, this means developing a 

numerical model of a real-world bridge, which was developed in the finite element simulation 

system ATENA [3]. The software can simulate the nonlinear behavior of reinforced concrete 

bridges, including cracking, crushing, reinforcement yielding, prestressing, and concrete-

reinforcement bonding. 

The fracture-plastic concrete material model was detailed in earlier studies [4][5], and its 

applicability for simulating typical failure modes was validated in [6]. There, the model uncertainty 

partial safety factor was calibrated, yielding a general value of 1.16, with a bias of μθ=0.979 and a 

coefficient of variation Vθ=0.081, defining the required accuracy for parameter identification. 

The parameter identification process using ANN was verified using a shear beam example (Fig. 3), 

based on beams tested by Leonhardt [9]. The goal is not to match experimental data but to assess 

whether an ANN can accurately identify input parameters—compressive strength (fc), tensile 

strength (ft), elastic modulus (E), and fracture energy (GF)—from a given load-displacement 

diagram (Fig.  4). The training dataset contained up to 1000 precomputed samples with varying 

material parameters. Fig.  4c illustrates the scatter of the calculated load-displacement diagrams. 

The neural network is then trained to predict the most suitable set of material parameters for 

predicting the experimentally obtained structural response indicated in Fig.  5. In each data set 64% 

samples are used for training, 16% for validation and 20% for testing. Fig.  6 demonstrates the 

accuracy of the predicted values for the selected material parameters from the testing series. 
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Fig.  3:  The geometry of shear beam test [9] for the study of ANN accuracy for the model parameter 

identification and surrogate modelling. Units are in mm. 

    (a)                                                             (b)  

Fig.  4:  (a) Shear failure mode for the shear beam [9], (b) load-displacement diagrams of 1000 

training and testing samples. 

 

Fig.  5:  Shear beam test experimental result with selected analyses with the closest match. 
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Fig.  6. ANN model accuracy for parameter identification of the critical material parameters for 

1000 training dataset. 

3 Rapid Response Surrogate Engineering Model 

In conventional applications of bridge monitoring systems, vast quantities of data are continuously 

collected through networks of sensors strategically distributed across the structure. These sensors 

record real-time measurements of key physical quantities such as strain, displacement, acceleration, 

and temperature. In current practice, the monitoring strategy frequently relies on comparing these 

raw measurements against predefined threshold values. When a threshold is exceeded, the system 

issues warnings or alarms to alert operators of potential anomalies. Although this approach ensures 

a basic level of safety surveillance, it suffers from a significant drawback: the sensor readings 

themselves often lack direct interpretability and are not inherently linked to engineering-level 

indicators of structural performance. Consequently, operators are left with large datasets that may 

be difficult to interpret in terms of actual structural safety or serviceability. 

For decision-makers and engineers, what is needed are higher-level performance indicators that 

can meaningfully capture the condition of the structure. Such engineering metrics include, for 

instance, the structural reliability index, the probability of failure or collapse, and the utilization 

ratio of specific structural components under applied loading. Unlike isolated sensor measurements, 

these indicators provide actionable insights into the safety margin of the bridge and its capacity to 

withstand current and future demands. The inability of conventional systems to directly provide 

this information underscores a critical gap between raw data collection and meaningful engineering 

assessment. 

This gap can be addressed through the use of surrogate models, which serve as computationally 

efficient proxies that link raw sensor data with engineering-level quantities. A surrogate model 

essentially encapsulates the complex relationships derived from detailed numerical simulations or 

experimental data, enabling it to translate sensor inputs into interpretable metrics in near real time. 

In doing so, surrogate models not only reduce the computational burden associated with repeated 

nonlinear finite element analyses but also significantly enhance the responsiveness and utility of 

bridge monitoring systems. By delivering rapid estimations of performance indicators, they support 

informed decision-making regarding maintenance, operation, and risk management. 

To demonstrate this concept, the previously introduced shear beam benchmark is revisited as a 

validation case. Here, a Dense Neural Network (Dense NN) architecture is employed to construct 

the surrogate model. The chosen network consists of four hidden layers, providing sufficient depth 

to capture the nonlinear relationships between inputs and outputs. The surrogate model in this 
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context is designed to replicate the results of computationally demanding nonlinear simulations by 

learning a functional mapping, denoted as Φp. This mapping (1) estimates the applied load 𝐹̅𝑖 based 

on a combination of deflection values Di and material properties, including the elastic modulus (E), 

compressive strength (fc), tensile strength (ft), and fracture energy (GF). 

The advantage of this surrogate representation is twofold. First, it drastically reduces the time 

required to obtain load estimations compared to running full finite element analyses, enabling near 

real-time evaluation of structural behavior. Second, by embedding physics-informed training data, 

the surrogate model maintains a close correspondence with the underlying mechanics of reinforced 

concrete behavior. As a result, the model provides not only speed but also accuracy and 

interpretability, thereby enhancing the overall effectiveness of digital twin–based bridge 

monitoring systems. In practical terms, this allows engineers and operators to transition from being 

passive data collectors to proactive decision-makers equipped with reliable, timely, and actionable 

insights. 

𝐹̅𝑖 = 𝛷𝑝(𝐷𝑖, Ec, fc, ft, GF)                                                                     (1) 

Fig.  7 shows the training results of the surrogate model for the pilot case of the shear beam (see 

Fig.  3), evaluated for two different datasets, referred to as Dataset A  and Dataset B. These datasets, 

containing 100 and 400 samples respectively, were generated through nonlinear finite element (FE) 

simulations. Each dataset captures the relationship between structural deflection and applied load 

across a range of varying material properties. The primary objective was to exploit these datasets 

to train an artificial neural network (ANN) capable of functioning as a computationally efficient 

surrogate, thereby replicating the results of full-scale FE simulations at a fraction of the 

computational cost. 

The figure further illustrates the predictive performance of the surrogate model by comparing its 

outputs with the original FE simulations for previously unseen test data. These test samples were 

deliberately excluded from the training phase in order to provide an unbiased assessment of the 

generalization ability of the ANN. In the load–displacement diagrams presented, the solid curves 

correspond to the original FE responses, while the dotted curves depict the surrogate model 

predictions. Even in the case of Dataset A, with only 100 training samples, the ANN is able to 

approximate the FE responses with reasonable accuracy, capturing both the nonlinear behavior and 

the overall system trends. Minor discrepancies are visible, particularly in regions of high 

nonlinearity, yet the model consistently reproduces the essential features of the structural response. 

When trained with Dataset B (400 samples), the predictive quality improves markedly. The larger 

dataset provides the ANN with greater exposure to the variability of material parameters, enabling 

it to learn a more precise mapping between inputs and outputs. This results in a more robust model 

with reduced error and higher reliability in reproducing unseen responses. 
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Fig.  7. Capability of the ANN surrogate model to predict the load-displacement curves of the shear 

beam model, (lef) Dataset A – 100 samples, (right) Dataset B – 400 samples. 

The broader significance of this exercise extends beyond the pilot shear beam case. Within the 

framework of Digital Twin technology, ANN-based surrogate models such as the one demonstrated 

here can be deployed in near real time to evaluate structural condition and operational safety. A 

particularly valuable application lies in the estimation of utilization ratios, which quantify the 

proximity of a structure to its failure threshold under the prevailing load state. By providing this 

metric in real time, the surrogate model equips infrastructure managers with actionable insights 

that go far beyond raw sensor data. Such capabilities open the door to proactive maintenance 

strategies, early-warning systems for abnormal behavior, and optimization of load management. 

Ultimately, the integration of surrogate modeling into digital twins enhances not only the efficiency 

of monitoring but also the resilience and long-term sustainability of critical infrastructure systems. 

4 Example of composite concrete steel railway bridge 

This section introduces a pilot implementation of the proposed Digital Twin framework, integrating 

ANN-based surrogate modeling, applied to a real-world bridge structure. The case study focuses 

on a small railway bridge shown in Fig.  8, which is located near the village of Kostomlaty in the 

Czech Republic. The bridge, constructed in 1946, is a relatively modest two-span structure 

composed of four reinforced concrete slabs strengthened with embedded steel I-sections (see Fig.  

9). After more than seven decades of service, the bridge exhibits pronounced signs of ageing and 

material deterioration. Most notably, longitudinal cracks have formed along the underside of the 

slabs, raising concerns regarding the structural integrity and long-term durability of the system. 

Assessment of the bridge revealed that, while it narrowly satisfies the required load-bearing 

capacity under Ultimate Limit State (ULS) conditions, it performs poorly under Serviceability 

Limit State (SLS) checks. Excessive deflections and the extent of visible cracking indicate that the 

bridge does not meet current serviceability criteria, thereby limiting its reliability in day-to-day 

operation. Due to these issues, the structure was selected for continuous monitoring and designated 

as a pilot demonstrator within the ongoing Digital Twin research project. Its relatively simple 

geometry, coupled with its deteriorated condition, makes it an ideal candidate for testing and 

validating the practical integration of Digital Twin concepts with AI-driven surrogate models. 

Within the proposed framework, the ANN model discussed in Section 2 is first used for system 

identification to find suitable material parameters as shown in Fig.  10. Then the ANN-based 
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surrogate model developed in Section 3 is deployed to forecast the bridge’s thermal response. The 

model, trained on a series of nonlinear FE simulations using the model shown in Fig.  11, is 

designed to estimate strain values resulting from time-varying ambient temperature conditions. 

Hourly temperature histories—such as the representative June profile used in this study—can be 

readily obtained from standard meteorological records. Structural response is tracked using fiber-

optic sensors installed longitudinally along the underside of the bridge deck (Fig.  8 and Fig.  9). 

These sensors record strain at four distinct locations, with particular attention given here to the 

mid-span readings, where thermal effects are typically most pronounced. 

Fig.  12 compares the FE-predicted strain responses at the sensor locations under the imposed 

temperature history. This simulated dataset provides the foundation for training the ANN-based 

surrogate model, enabling it to reproduce thermal strain behavior with high computational 

efficiency. Once trained, the ANN operates as a functional mapping that predicts thermal-induced 

strains directly from temperature input data, thus enabling real-time evaluation of structural 

response within the Digital Twin environment. This approach demonstrates how surrogate models 

can bridge the gap between computationally demanding nonlinear simulations and the need for 

rapid, continuous predictions required in practical monitoring applications. The ANN based 

surrogate model from Section 3 then represents a functional: 

𝑆𝑛̅,𝑖 = Φ𝑇[𝒇𝑻𝒊(𝑡𝑖−24, 𝑡𝑖), 𝑇𝐴𝑣𝑔(𝑡𝑖−72, 𝑡𝑖−24) ]                                              (2) 

The ANN model estimates the strain value at sensor Sn at time step i, using the ambient temperature 

history over the preceding 24 hours and the current time i. Additionally, it incorporates the average 

temperature from the earlier 48-hour period (i.e., between i−72 and i−24) to account for long-term 

thermal effects. 

The developed ANN model is designed to provide an estimate of the structural response recorded 

at a given sensor 𝑆𝑛  at time step i. The prediction is based on two sources of thermal information: 

(i) the detailed temperature history over the preceding 24 hours, and (ii) the average temperature 

trend calculated over the two days prior to that interval, i.e., the range from (i-72, i-24) hours. This 

combination of short-term fluctuations and longer-term thermal trends allows the surrogate model 

to capture both immediate and cumulative temperature effects on the bridge structure. 

The accuracy of the ANN surrogate in reproducing measured strain values is demonstrated in Fig.  

12, where the predicted sensor outputs show strong agreement with the reference data. This 

validation highlights the capability of the surrogate model to replace computationally demanding 

finite element simulations with near real-time predictions. Importantly, the approach is not 

restricted to strain measurements alone. Once trained, the ANN surrogate can be configured to 

predict a broad range of engineering performance quantities that are directly relevant for structural 

assessment. For instance, it may be employed to estimate the maximum crack width in critical 

regions of the slab or to identify the peak compressive stress developing in the concrete (see Fig.  

13). Such indicators are of far greater practical significance for engineers than raw strain values, 

as they directly relate to serviceability and safety criteria. 
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Fig.  8: Railway bridge at Kostomlaty, Czech Republic showing the sensor location S1, S2 and S3. 

 

Fig.  9: Kostomlaty pilot bridge application example showing the top view with the sensor locations.  
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Sensor #3 

Sensor #1 
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Fig.  10: Example of data fitting and parameter identification process for Kostomlaty railway bridge. 

 

 

Fig.  11: Finite element model of the quarter section of the model, right figure shows the location 

of the internal I steel beams. 

It is essential to recognize that the structural response of the studied bridge is highly nonlinear, 

owing to its hybrid system of embedded steel beams within plain concrete. As illustrated in Fig.  

14, microcracking is observed even under the action of self-weight, prior to the application of 

service loads. These microcracks further propagate under thermal loading, underscoring the 

complex interaction between temperature variation, restraint effects, and the inherent material 

nonlinearity of concrete. Capturing such effects with traditional linear approaches would be 

infeasible, whereas ANN-based surrogates trained on nonlinear simulations can efficiently account 

for them. 
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In general, any engineering quantity of interest for the investigated bridge can be evaluated using 

an appropriately trained ANN-based surrogate model. Conceptually, such models can be expressed 

in the generic functional form: 

𝑅̅𝑛,𝑖 = Φ𝐸𝑛𝑔[𝒇𝑻𝒊(𝑡𝑖−24, 𝑡𝑖), 𝑇𝐴𝑣𝑔(𝑡𝑖−72, 𝑡𝑖−24), 𝑆𝑛,𝑖 ]                                              (3) 

This flexible formulation highlights the adaptability of ANN surrogates for diverse monitoring 

objectives, paving the way for their broader integration into Digital Twin frameworks for predictive, 

data-driven infrastructure management. 

 

Fig.  12: The left graph shows the evolution of ambient temperatures at the bridge location in the 

investigated month June 2023. The right graph shows the predicted average sensor strains along 

optical fibers S1-S3 due to thermal loads. 

 

Fig.  13: The prediction accuracy of ANN surrogate model for selected engineering quantities based 

on 3 days history of ambient temperature. 

    

Fig.  14. The railway bridge deflection due to thermal loads showing the evolution of strains at 

sensor 204, tensile stresses at the I-beam bottom flange and bridge deflections with cracks (left), 

the evaluation of bridge utilization using the fast response surrogate model during train overpass. 

 S1 micro-strains  Crack width [mm] Concrete 

compression  

[MPa] 

 S1  S2  S3 
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Following the successful training of the ANN using the numerical model illustrated in Fig.  11, the 

fast-response surrogate model introduced in Section 3 was deployed to predict a range of 

engineering quantities that are directly relevant for bridge assessment and maintenance planning. 

These outputs, integrated within the prototype Digital Twin platform, provide infrastructure 

managers with rapid and interpretable indicators that go far beyond raw sensor measurements. 

Selected screenshots from the developed platform are presented to demonstrate the potential of this 

approach in supporting decision-making processes. 

As an example, Fig.  14 displays the evolution of the bridge utilization ratio during a train overpass. 

This metric quantifies the proportion of the load-bearing capacity currently mobilized by the 

structure, offering an immediate measure of how close the bridge is operating to its design limits. 

Such information is invaluable for real-time risk evaluation and for planning traffic restrictions or 

load management strategies during critical periods. 

In addition, Fig.  15 highlights two further predictive outputs derived from sensor readings and 

ANN-based surrogate calculations during the same train crossing. The first is the distribution of 

maximum stresses in the bottom steel flange, which plays a key role in ensuring structural safety 

under repeated live loads. The second is the estimation of anticipated crack widths within the 

concrete slab, an important serviceability criterion that influences durability, long-term stiffness, 

and maintenance requirements. By providing these parameters in near real time, the surrogate 

model enables engineers to not only monitor structural safety but also anticipate degradation 

mechanisms that affect the bridge’s life-cycle performance. 

Collectively, these examples illustrate the versatility of the ANN-based surrogate approach. By 

transforming sensor inputs into actionable engineering metrics, the Digital Twin platform enhances 

operational awareness, supports proactive maintenance strategies, and contributes to the 

sustainable management of ageing infrastructure. 

(a)  

(b)  

Fig.  15: Prediction of bridge bottom flange stresses in steel I section (a) and crack opening and 

closure in concrete slab (b) during train overpass. 
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5 Example of durability assessment of reinforced concrete road bridge 

The overarching goal of this research is to employ ANN-based surrogate models for the predictive 

assessment of the life-cycle performance, durability, reliability, and safety of reinforced concrete 

structures. This capability is essential for moving beyond reactive maintenance toward proactive, 

data-driven infrastructure management. To illustrate the practical application of this approach, a 

second pilot case study is presented, focusing on the Vogelsang Bridge in Esslingen, Germany, 

which spans the Neckar River. 

The Vogelsang Bridge represents a complex structure composed of eight partial sections built using 

three different construction methods. Erected between 1971 and 1973, the bridge has a total length 

of approximately 595 m and covers an overall deck area of 9,744 m², including its approach ramps. 

For the purposes of monitoring and analysis, two representative spans of 13.8 m + 13.2 m were 

selected. Structurally, this section corresponds to a continuous, non-prestressed reinforced concrete 

beam with a structural depth of 0.6 m. 

As part of the European cyberBridge project (www.cyberbridge.eu) an extensive in-situ monitoring 

campaign was carried out over a period of 61 days, from January to March 2019. The monitoring 

system employed was the iBWIM (Bridge-Weigh-In-Motion) technology, developed by PEC – 

Petschacher Consulting ZT-GmbH. This innovative system enables the continuous recording of 

structural responses under real traffic conditions without interrupting service. 

The monitoring setup consisted of deflection measurement units coupled with a laser rangefinder 

used for accurate vehicle detection (see Fig.  16). These units were installed on the underside of 

the bridge, ensuring that installation and operation did not interfere with traffic flow. Each unit 

integrated both strain gauges and a data acquisition module, allowing for the precise measurement 

of strain responses under varying traffic loads. The strain gauges were strategically arranged in 

both the transverse and longitudinal directions, providing a comprehensive picture of load 

distribution, stress transfer, and overall structural behavior. 

The virtual numerical models were developed using the finite element (FE) simulation platform 

ATENA [3]. Calibration of the models was performed against monitoring results from the bridge, 

supplemented by reference loading tests with calibration trucks of known weight (see Fig.  17). 

Once calibrated, the FE model was able to reproduce the key behavioral characteristics of the real 

structure, not only under short-term loading but also considering the long-term deterioration 

mechanisms that govern the service life of reinforced concrete bridges. These ageing mechanisms 

were incorporated into the model through a mechano-chemical framework, which explicitly 

accounts for the accelerated progression of damage in the presence of mechanical cracking. The 

degradation model itself has been described and validated in earlier work [10] and is therefore only 

summarized here. 

The nonlinear response of the concrete was modeled using the fracture–plastic constitutive material 

law [5] implemented in ATENA software [3]. This advanced formulation captures the main aspects 

of reinforced concrete behavior, including tensile cracking, compressive crushing, reinforcement 

yielding or rupture, and potential bond failure between steel and concrete. One of the most critical 

deterioration processes for such structures is the long-term action of deicing salts, which are 

regularly applied during winter maintenance. Chloride ions from these salts penetrate into the 

porous concrete matrix, gradually diffusing towards the reinforcing steel. As chloride concentration 

increases, the pore solution pH decreases and the alkalinity of the concrete cover is reduced. Once 

http://www.cyberbridge.eu/
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the protective alkaline environment is lost, reinforcement corrosion is initiated, leading to 

progressive cross-sectional loss of steel and, ultimately, reduction in load-carrying capacity. 

 

 
Fig.  16: View and instrumentation of the selected section of the Vogelsang bridge, Esslingen, 

Germany. 

 
Fig.  17: View of the crack development and strain sensor data from the truch overpass during the 

model calibration process. 
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In the finite element simulation, this process is modeled by coupling a chloride ingress model with 

a reinforcement corrosion model. Chloride transport through the porous medium is represented as 

a combined diffusion and binding process, where ions are partly absorbed by the C-S-H gel or 

precipitated as secondary compounds [11]. In engineering applications, this is typically represented 

through a diffusion equation with a time-dependent coefficient. Importantly, the presence of cracks 

caused by loading accelerates chloride transport, a phenomenon captured in the model by updating 

the diffusion rate as a function of crack width. The diffusion process itself is represented as a one-

dimensional transport mechanism, which allows efficient application even in large-scale 

simulations. 

At each reinforcement location, modeled using the discrete embedded reinforcement approach [12], 

the chloride concentration is tracked over time. When the chloride content at the depth of 

reinforcement exceeds a critical threshold, corrosion is initiated. The corrosion rate is then 

calculated as a function of chloride concentration, exposure temperature, and elapsed time. The 

simulation proceeds in incremental steps: in each step, the corrosion depth is estimated and the 

steel cross-sectional area is reduced accordingly. A new static equilibrium is computed, updated 

crack widths are evaluated, and these in turn accelerate chloride ingress in the subsequent step. 

This iterative coupling between mechanical damage and chemical deterioration allows the model 

to realistically capture the long-term degradation process. 

The numerical implementation builds upon the mechanistic formulations of Liu and Weyers [13] 

and the guidelines established in the DuraCrete project [14]. The effect of reinforcement corrosion 

on bond strength is also explicitly considered. Here, the bond–slip law was defined according to 

the fib Model Code 2010 [15], while the reduction of bond properties due to corrosion was 

implemented following the empirical relationships proposed by Bhargava et al. [16]. 

For structural assessment using nonlinear FE analysis, it is essential to define a load history that 

reflects both the actual sequence of actions on the real bridge and the combinations prescribed by 

design codes. In addition to permanent and live loads, the long-term deterioration due to chloride 

ingress and reinforcement corrosion must be included. A representative load sequence used in the 

Vogelsang Bridge case study is as follows: 

- Step 1: Application of design dead loads (self-weight and superimposed dead loads). 

- Step 2: Application of design live loads, including concentrated and distributed traffic 

effects. 

- Step 3: Removal of the live loads applied in step 2. 

- Step 4: Simulation of chloride-induced degradation and associated corrosion effects. (Fig.  

18) 

- Step 5: Re-application of live loads to overload conditions. 

Chloride attack was simulated for progressive durations of 25, 50, 75, 100, 125, and 150 years 

within step 4. Partial reloading of dead and live loads was included during this interval to replicate 

the realistic service conditions under which chloride penetration occurs, excluding partial safety 

factors. After deterioration simulation, the structure was subjected to increasing live loads until 

failure, generating a set of load–displacement curves (see Fig.  20) corresponding to different stages 

of ageing. This figure demonstrates the effect of reinforcement corrosion on the load-carrying 

capacity of the bridge. It is possible to observe how the strength of the bridge is gradually 

decreasing over the years. 
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Fig.  18: Numerical model of the Vogelsang bridge with the indication of the assumed chloride 

concentrations at the bottom at top bridge surfaces. 

The global resistance evaluation followed the ECoV approach originally proposed in [17] and later 

adopted in fib Model code 2010 [15], which requires paired analyses with mean and characteristic 

material parameters. The resulting time-dependent resistance evolution is plotted in Fig.  21. For 

the Vogelsang Bridge, the model predicts a life expectancy of approximately 132 years.  

 

 
Fig.  19: The evolution of chloride concentration (a), resulting reinforcement corrosion (b), crack 

development (c) and reinforcement stresses (d) at the time of 135 years during the durability 

numerical simulation.   

The most interesting and unique results from the presented long term and durability behavior or 

this reinforced concrete bridge are summarized in Fig.  19. This figure shows various interesting 

quantities at the time of 135 years of the bridge life. The evolution of chloride concentration at the 

depth of the reinforcement cover is shown in Fig.  19a. The resulting reinforcement corrosion using 

(a) 

(b) 

(c) 

(d) 
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the briefly described chloride ingress and corrosion model [10] is depicted in Fig.  19b. The 

reinforcement corrosion is indicated as a relative cross-sectional area that is lost due to corrosion. 

This means that the value of 0 indicates no corrosion, and the value of 1 means that the whole 

reinforcement cross-sectional area has been lost due to the corrosion. The loss of reinforcement 

area results in the increase crack propagation, which is shown in Fig.  19c as well as in the higher 

reinforcement stresses in Fig.  20d. 

 
Fig.  20: Load-displacement curves for loading up to failure after several years of corrosion process 

(left), crack pattern at failure load for the highest exposure of 150 years (right).  

  
Fig.  21: Evolution of Vogelsang bridge capacity depending on years of chloride exposure (left), 

Stresses in the corroded reinforcement at the peak load for the most critical scenario of 150 years 

of exposure (right).  

6 Conclusions 

This study has investigated the integration of Artificial Neural Networks (ANNs) into a Digital Twin 

framework for the structural analysis and monitoring of reinforced concrete bridges. Within the proposed 
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methodology, ANNs serve a dual role: first, in the calibration of the virtual twin, ensuring that the numerical 

model reliably reproduces the behavior of the physical structure; and second, in the development of fast-

response surrogate models that enable near real-time translation of raw sensor data into actionable 

engineering quantities. These surrogate models provide direct estimates of performance indicators such as 

utilization ratios, stress levels, and crack widths, thereby bridging the gap between continuous monitoring 

data and engineering decision-making. 

A central advantage of the approach lies in addressing a persistent limitation of conventional monitoring 

systems: while modern sensing technologies can generate vast amounts of data, operators often struggle to 

interpret these measurements in terms of structural safety, reliability, and serviceability. By embedding 

physics-informed ANN models into a Digital Twin environment, the proposed framework offers a pathway 

to transform overwhelming raw data streams into interpretable and decision-relevant information, ultimately 

enhancing the efficiency and accuracy of infrastructure management. 

Beyond short-term monitoring, this work has also highlighted the integration of durability and ageing 

models into the Digital Twin concept. By coupling mechano-chemical formulations for chloride ingress and 

reinforcement corrosion with nonlinear FE simulations, and subsequently embedding these results into ANN 

surrogates, the framework is extended toward predictive life-cycle assessment. This capability enables not 

only the evaluation of current structural condition but also the forecasting of long-term degradation 

processes, thereby supporting proactive maintenance planning and sustainable asset management. 

Overall, the combination of AI-driven surrogate modeling, durability simulation, and Digital Twin 

technology marks a significant advancement in structural health monitoring. It paves the way for intelligent, 

data-driven infrastructure systems that can anticipate deterioration, optimize resource allocation, and ensure 

the long-term safety and reliability of critical bridge networks. 

This work is part of a research project supported by the Czech Technology Agency under the project 

TM04000012 “BRIHIS - A concrete bridge health interpretation system based on mutual boost of big data 

and physical mechanism” within the Delta 2 Programme. The financial support is greatly 

acknowledged. 
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Fig.  1: Bridge digital Twin is typically a combination of monitoring of real structural response and 

a numerical model that exchange data to provide predictions and information on structural health 

and reliability.  
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Fig.  2: Digital twin schema: ANN surrogate model is used for two purposes: ANN on the right for 

model calibration, i.e., parameter identification, and ANN on the left provides real-time 

engineering data for maintenance decisions. 
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Fig.  3:  The geometry of shear beam test [9] for the study of ANN accuracy for the model parameter 

identification and surrogate modelling. Units are in mm. 
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Fig.  4:  (a) Shear failure mode for the shear beam [9], (b) load-displacement diagrams of 1000 

training and testing samples. 
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Fig.  5:  Shear beam test experimental result with selected analyses with the closest match. 
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Fig.  7. ANN model accuracy for parameter identification of the critical material parameters for 

1000 training dataset. 
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Fig.  7. Capability of the ANN surrogate model to predict the load-displacement curves of the shear 

beam model, (lef) Dataset A – 100 samples, (right) Dataset B – 400 samples. 
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Fig.  8: Railway bridge at Kostomlaty, Czech Republic showing the sensor location S1, S2 and S3. 
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Fig.  9: Kostomlaty pilot bridge application example showing the top view with the sensor locations.  
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Fig.  10: Example of data fitting and parameter identification process for Kostomlaty railway bridge. 
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Fig.  11: Finite element model of the quarter section of the model, right figure shows the location 

of the internal I steel beams. 
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Fig.  12: The left graph shows the evolution of ambient temperatures at the bridge location in the 

investigated month June 2023. The right graph shows the predicted average sensor strains along 

optical fibers S1-S3 due to thermal loads. 
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Fig.  13: The prediction accuracy of ANN surrogate model for selected engineering quantities based 

on 3 days history of ambient temperature. 
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Fig.  14. The railway bridge deflection due to thermal loads showing the evolution of strains at 

sensor 204, tensile stresses at the I-beam bottom flange and bridge deflections with cracks (left), 

the evaluation of bridge utilization using the fast response surrogate model during train overpass. 
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Fig.  15: Prediction of bridge bottom flange stresses in steel I section (a) and crack opening and 

closure in concrete slab (b) during train overpass. 
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Fig.  16: View and instrumentation of the selected section of the Vogelsang bridge, Esslingen, 

Germany. 
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Fig.  17: View of the crack development and strain sensor data from the truch overpass during the 

model calibration process. 
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Fig.  18: Numerical model of the Vogelsang bridge with the indication of the assumed chloride 

concentrations at the bottom at top bridge surfaces. 
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Fig.  19: The evolution of chloride concentration (a), resulting reinforcement corrosion (b), crack 

development (c) and reinforcement stresses (d) at the time of 135 years during the durability 

numerical simulation.   

 

 

  



41 

 

 

 

Fig.  20: Load-displacement curves for loading up to failure after several years of corrosion process 

(left), crack pattern at failure load for the highest exposure of 150 years (right).  
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Fig. 21: Evolution of Vogelsang bridge capacity depending on years of chloride exposure (left), 

Stresses in the corroded reinforcement at the peak load for the most critical scenario of 150 years 

of exposure (right).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


